Aqueous-Based Coaxial Electrospinning of Genetically Engineered Silk Elastin Core-Shell Nanofibers

نویسندگان

  • Jingxin Zhu
  • Wenwen Huang
  • Qiang Zhang
  • Shengjie Ling
  • Ying Chen
  • David L. Kaplan
چکیده

A nanofabrication method for the production of flexible core-shell structured silk elastin nanofibers is presented, based on an all-aqueous coaxial electrospinning process. In this process, silk fibroin (SF) and silk-elastin-like protein polymer (SELP), both in aqueous solution, with high and low viscosity, respectively, were used as the inner (core) and outer (shell) layers of the nanofibers. The electrospinnable SF core solution served as a spinning aid for the nonelectrospinnable SELP shell solution. Uniform nanofibers with average diameter from 301 ± 108 nm to 408 ± 150 nm were obtained through adjusting the processing parameters. The core-shell structures of the nanofibers were confirmed by fluorescence and electron microscopy. In order to modulate the mechanical properties and provide stability in water, the as-spun SF-SELP nanofiber mats were treated with methanol vapor to induce β-sheet physical crosslinks. FTIR confirmed the conversion of the secondary structure from a random coil to β-sheets after the methanol treatment. Tensile tests of SF-SELP core-shell structured nanofibers showed good flexibility with elongation at break of 5.20% ± 0.57%, compared with SF nanofibers with an elongation at break of 1.38% ± 0.22%. The SF-SELP core-shell structured nanofibers should provide useful options to explore in the field of biomaterials due to the improved flexibility of the fibrous mats and the presence of a dynamic SELP layer on the outer surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Drug Release Electrospun Core-Shell Nanofibers with Tunable Dose in the Second Phase

This study reports a new type of drug-loaded core-shell nanofibers capable of providing dual controlled release with tunable dose in the second phase. The core-shell nanofibers were fabricated through a modified coaxial electrospinning using a Teflon-coated concentric spinneret. Poly(vinyl pyrrolidone) and ethyl cellulose were used as the shell and core polymer matrices respectively, and the co...

متن کامل

Core–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol

Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...

متن کامل

Core/shell nanofibers with embedded liposomes as a drug delivery system.

The broader application of liposomes in regenerative medicine is hampered by their short half-life and inefficient retention at the site of application. These disadvantages could be significantly reduced by their combination with nanofibers. We produced 2 different nanofiber-liposome systems in the present study, that is, liposomes blended within nanofibers and core/shell nanofibers with embedd...

متن کامل

Tunable biphasic drug release from ethyl cellulose nanofibers fabricated using a modified coaxial electrospinning process

This manuscript reports a new type of drug-loaded core-shell nanofibers that provide tunable biphasic release of quercetin. The nanofibers were fabricated using a modified coaxial electrospinning process, in which a polyvinyl chloride (PVC)-coated concentric spinneret was employed. Poly (vinyl pyrrolidone) (PVP) and ethyl cellulose (EC) were used as the polymer matrices to form the shell and co...

متن کامل

Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends

Hollow carbon nanofibers (HCNFs) were prepared by electrospinning method with several coaxial nozzles, in which the level of the inner nozzle-end is adjustable. Core/shell nanofibers were prepared from poly(methyl methacrylate) (PMMA) as a pyrolytic core and polyacrylonitrile (PAN) as a carbon shell with three types of normal (viz. inner and outer nozzle-ends are balanced in the same level), in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016